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THE STABILITy OF ORTHOTROPIC ELLIPTIC CYLINDI!RS

IN PURII BENDING*

By O. S. Heck

The theoretical critical lending stress of elliptic
cylindrical shells is determined on the assumption of in-
finite shell length and absence of local instability phe-
nonenac The results of tests on isotropic elliptic cylin-
drical shells stressed in bending are compared with the
theoretical results. The practiaal applicability of the
theory is discussed.

I. INTRODUCTION

The preliminary calculation of the load capacity of a
thin-walled cylindrical shell under bending stress is of
importance in airplane statics in the analysis of shell
bodies. Hereby it does not merely pertain to isotropic
circular cylindrical. shells which, in the literature up to
now, are almost exclusively used in bending tests, but also,
above all, to the lending of orthotropic (orthogonally ani-
sotropic~’* and stiffened cyli-ndrical shells. The study of
shells with other than circular sections (elliptic, for ex-
ample) is of particular practical importance.

General application of Navier~s simple bending theory
to thin-walled beams is no longer permissible, according
to Prandtl, l)ecause of the occasionally enormous strain of
the section und.or load. On the strength of this, and
promi>tod by experiments on elastic balanco tubes, von
K6rm%n investigated the bending of curved thin-walled
pipes (reference 1). But his findings are inapplicable to
straight pipes. Besides, von K6rm&n failed to mention the
important fact that the bending moment has a maximum (crit-
——.—-. ____ __ ____

II
*“Uber die Stabilit~t orthotroner elliptischer Zylinder-

-!1”schalen l)ei reiner Biegung. Luftfahrtforschung, vol.
14, no. 3, March 20, 1937, pp. 137-147.

**The conccnt of orthogonally anisotropic plate was proba-
bly fir~t given by M. T. Huber (cf. Bauing. , vol. 4,
1923, p. 354.
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ical) value conditioned by the flattening of the cross
sectionC

The first study on the pure bending of infinitely
long isotropic circular cylindrical shells, was made by
Brazier (reference 2). He shows that the bending moment
does not increase linearly with the curvature of the shell
axis and that it assumes a maximum (critical) value for a
certain curvature of the shell axis; for greater curvature
the system ceases to be stalle.

This type o,f instability (similar instability pre-
vails under compression and bending of a bar) is essen-
tially different from that encountered in the usual sta-
bility prohlcms, such as in the buckling of a straight
bar, for example.

Figure 1 shows the behavior of a straight compres-
sion member. The load P runs linear to the approach f
of the bar ends as far as the %ranching-off point (buck-
ling load). From that point on, there are two possi%le
conditions of equilibrium: the bar may remain straight -
that is, in unstable equilibrium, or deflect sideways un-
der stable equilibrium. In both cases the load P in-
creases beyond the lmckling load.

Brazier?s discussion of bending of a cylindrical shell
is illustrated in figure 2. The curve which gives the
bending moment B relative to the curvature K of the
shell axis, has no branching-off noint. The bending moment
cannot be increased beyond the critical value Bkr . After
the critical condition is exceeded there remains only one
possi’ble equilibrium condition of the shell, and that is:
unstalle,

Figure 3 finally shows the behavior of a cylindrical
shell in bending when accompanied by local buckles which
belong to the instability phenomena of the usual type.
The maximum load supported by the shell is more or less
reduced by the buckles; hence Brazierts value obtained by
disregarding a local buckling, constitutes a theoretical
upper limit of the maximum load in an infinitely long
shell.

II. FORMULATION OF PROBLZMS AND ASSUMPTIONS

In the present report the behavior of orthotropic
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cylindrical shells of elliptic section in pure lending is
theoretically investigated. Critical bending moment,
critical lending stress, and deformation of shell section
are determined. The principal assumptions are as follows:

1. The cylindrical shell is of $nfinite length,

C2. There are no local instability phenomena (ipe.,
no wrinkling).

3. The stresses remain %elow the proportional limit
of the material.

The value of our findings for practical .anplication,
if premises 1 and 2 are not met, is discussed in the next
sea.tion. Whether assumption 3 is fulfilled can always be
verified.

The local instability of long shells can be investi-
gated when allowa~ce for the strain condition - i.e., the
change in curvature radius of the shell section and of the
dista,iices from the zero line - is made in accordance with
the considerations of the presei~t report. An approximate
stuQ of locnl instability has been made %y Brazier for
the case of isotnnpic circular cylindrical shell. But tho
local instr.bility is so seriously affcctcd by inevitable
prelimine.ry wrinkling that theoretical studies which do
not r.llow for these preliminary wrinkles, are of limited
practical importance only.

III. RESULTS AND SCOPE OF VALIDITY

The critical hcnding moment Bkr of an orthotropic
cylindrical shell of elliptic section stressed in bending
in tho major or minor axis of the section is on the assump-
tions cited in the preceding section:

with

‘kr = ~ ~kr

Cfkr = C ‘–

d+-+=”’ ‘“

(1)

(2)

Hereby
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. .

E is the modulus of elasticity of the material

v, Poissonts ratio (about 0.3 for steel and duralumin)

.s, wall thickness of shell

Sm a mean wall thickness, which goyerns the stiffness of
the shell to axial stresses (in the case of the shell
with closely spaced stringers, which approximately.,
resembles an orthotropic shell, it is: Sm = .s +

1?
—9 where F = total section of stringers, and u =
u
circumference of section of mean shell surface)*

a,b, major and minor half axis of the shell section

f’! radius of curvature of undeformed shell section at
the point of stress peak (pg = a2/h under bending

on the major sectional axis Pk ‘ ha/a by bending on

the minor sectional axis),.

w, section modulus of undeformed cross section of the
elliptic cylinder

(Wg = ~b(b+3a)sm

referred to major sectional axis

~k=~ a (a+ 3b) Sm

referred to minor sectional axis)

IJkr, critical lending stress (Ukr is simply a fictitious

stress, because W refers to the undeformed cross
section of the shell)

c, a numerical value which depends on axes ratio a/%

2 a2 - 1)2
of the shell ~ection or the value k = ‘–~— and

may be obtained from figure 4.

The subscripts g and k indicate, respectively, the
bending shout the major and minor cross-sectional axes.

------------------------------------------------- ————

*Uniform stringer distribution being assumed.
,.
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For a shell having unlike moduli of elasticity in lon-
gitudinal and .....ciumferentialtialdirections, the critical
bending stress is:

—

(3)

where El = modul”us of elasticity in circumferential, and
~ a in longitudinal, direction of the shell.

The ‘Irealltcritical bending stress ~rt (in contrx
distinction to the llf~ctitiousl~ critical stress gkr) must
not -- if the fin~.ings of this study are to retain their
validity - “exceed the mromortional limit of the material.
To decide whether this-co~dition is fulfilled, compute
Okr : according to (2) or (3) whereby cg~ and Ck t O b-

tai~a%le from figure 5, replace cg and ck ,,..

The extent of the cross-sectional strain may be seen
from figures 6 and 7, where the relative length changes
in the axes of the shell section, on reaching the critical
condition, are plott6d.*

In the calculation of the quantities plotted in fig-
ures 4 to 7, the squares and products of the displacement
components of the shell element in their cross~sectional
plane were disregarded relative to the first powers of
these values, as in Brazier~s study. To gain an idea of
the effect of this omission, we made a more accurate cal-
culation for k2 = () and ka = 0.3, the results of which
are a.1.soincluded in figures 4 to 7. But even these vale
ues {we not absolutely Correct, since there are still
other influences wh+ch are not considered in the calcula-
tion. In the calculation of the curvature change of the
shell section, for example, the displacement components
of the shell elements in the cross-sectional plane are
considered as small: i.e. , higher powers of these values
<are neglected relative to the first powers. Further, it
was assumed that the strain in the shell section” consists.
solely in a deflection, but not in a length change of the
line elements of the shell section. The more exact calcu-
lation gives greater values for akr , so that the apple-
.-—__________ ————
*
w is the shifting Of a cross-~ecti.onal point at right

angles to the circumference (positive inward)~ The expla-
nation for tvo and lrn/2 will be found in figures 12
and 13.
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cation of the results of the simple calculation leaves
onc on,the safe side. Experimental verification of the
theory seems, in the face of these facts, absolutely nec-
essary.

In the following, the extent of the practical applica-
tion of equations (1) to (3) to cases where assumptions
(1) and (2) are fulfilled, is discussed.

a) Isotropic shells.- In isotropic shells,—-——___ even if
of great length, the beginning of the instability through
collapse of the shell walls toward the neutral axis, is
initiated by a local wrinkling on the compression half of
the cylinder, as a result of which the failing load of the
shell is reduced. Numerous experiments on isotropic cir-
cular , cyliildrical shells (cf. figs. 17 to 19) have shown
that the average maximum bending moment supported by the
shells is not very much different from the theoretical
value for the infinitely long shell without consideration
to local instability phenomena.

The average value of c of 7? tests is Caverage =
0.357. But the scatter of the experimental values is in
part quite considerable. From the availa%le test data
there is no indication of any effect of shell length (fig.
19).

For the purpose of checking the applicability of the
theoretical values arrived at with the assumptions out-
lined in section II, for elliptic cylindrical shells of
finite length, we made seyeral experiments with isotropic
elliptic cylindrical shells of varying axes ratios? The
tests disclose through the theoretical values computed
with the coefficients Cg and ck a good agreement for
bending about the major cross-sectional axis, l)ut markedly
lower experimental values for bending about the minor
cross-sectional axis. (Cf. section IV and fig. 4.)

In the latter case, it means that local wrinkling of
the shell wall results in a material reduction of failing
load of the shell, contrary to the experiences with circu-
lar cylindrical and elliptic cylindrical shells in bend-
ing about the major cross-sectional axis. A certain ex-
planation for this fact may %e found when assuming that
the failure then occurs in the event that the axial stress

in the shell reaches at some point of the cross section
~he critical value ~r of equation (2). This most un-
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favorably st,ressed point fOll OWS from the condition that
the. pro duct...f.f--cur.v.a.ture radius of. shell sect ion. and the
distance from the neutral zone must become a maximum.
Wb.en disregarding the strain of the shell section this
point is given by

t
1

= arc sin —
2k

(k2 > 0.25)

Then the critical bending moment can be computed from the
fornulas (1), (2), and (3), is at k2 > 0.25 instead of
c~ the coefficient

is substituted. At k2 ~ 0.25 the extreme fiber on the
compression half of the shell is most adversely stressed.
Figure 4 shows ml.otted against k .~k . . The agreement

with the expcri~.ental values is comparatively good.

%) Orthotropic shells.-—————- — While the local bulging of
the walls of a shell IVith lengthwise closely spaced stiff-
eners, which approximately resembles an orthotropic shell,
is dependent on the bending stiffness of these stiffeners,
the fr.ilurc due to co].lan~e of the shell walls is depend-..
ent Oli its cross section. There is no local bulging of
shell walls before failure in very long elliptic shells
with closely spaced stringers for sufficiently high bend-
ing stiffness and sm~all cross section. In that case the
results of the present report are exactly valid.

As concerns the applicability of the theoretical for-
mula ai~d ~hc effect of shell length in orthotropic ellip-
tic shells (plywood shells, for instance), no experiments
~re available. For computing the failing moment of short
stiffened shells with strong fairly closely spaced frames,
the results of this study are inapplicable as the re-
strained flattening of the shell section increases the
failing load of such ~hells as a rule very considerably
compared to the failing load of very long shells without
francs.* If the strain of the section of such a shell iS

-------------------------------------------------

*The theoretical formula (2) is also useful for calculat-
ing. the closed part of a shell body ‘with Comparatively
closely spaced intermediate bulkheads, since it indicates
the critical bending stresses for the collapse of the shell
walls in ‘ouckling form; that is,
(Continued at bottom of page 8)

a lower limit in shells of
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negligibly small, then the study of the local stability of
the assumedly orthotropic shell is comparatively simple as
against the general case, because the bending moment up to
stability limit runs linear with the curvature of the shell
axis- As regards the bulging of the walls of orthotropic
shells, a better agreement %etween theory and test seems
indicated than with isotropic shells, since the inevitable
preliminary bulges are smaller in comparison with the mean
wall thickness.

IV. EXPERIMENTS WITH ISOTROPIC ELLIPTIC CYLINDERS

A series of failing tests in pure bending about the
major and minor cross-sectional axes was carried out on
isotropic elliptic cylindrical shells of duralumin of two
different axes! ratios. The dimensions of the test speci-
mens are given in table I. (1 is the free length of the
cylindrical shell. ) The modulus of elasticity of.the ma-
terial was established at E = 7.5 x 10s kgcm-2. The
evaluation of the tests was made with with v = 0.3
Poissonts ratio. The experimental arrangement itself is
illustrated in figure 8. The wooden frames at the ends of
the test cylinder serve to press the sheet against them
through exactly fitting wooden jigs. Oile en<. frame is
clamped to a solid frame vhile s,pure bending moment is
app,lied at the other frame. The weight of this frame is
compensated. Two failing tests could be made on each
specimen. After the first test the cylinder was turned
through 180° on its axis, which left the still undamaged
part of the snecimen on the compression half of the cylin-
der for the s~cond test.

TABLE I. Dimensions of Test Specimens
..———______ ——..— _____ _____

,~ec;n~;:~rn=+rn:$%:

c.-— ..e.———.-.-—.— —--.— -.-——.—.—.-———-——— .-.——-———-.—— -.-———-.....-

(* Continued from footnote, page 7)
of finite length, which are bounded by fixed ribs. Logic-
ally, the thickness of a smooth sheet must thereby be writ-
%en for s in (2), whose bending stiffness equals the mean
bending stiffness of the stiffened shell in circumferential
directioil under consideration of the frames. One obtains
in this manner a control point for the rib dimensions.
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The results of the failing tests tire given in ta%le
11: “For comparison with the theoretical values (admi$ted-
IY derived for infinitely long cylindrical shell and dis-
regarded local instability phenomena), “we “have included
the experimeiltal values of Cg and ck in figure 4. A
disctission of the test data is given in” the preceding
section.

TABLE 11. Test Data .

Bending about major I Bending about minor
cross-sectional axis cross-sectional axis

Bk uk 1.Ck
kr “ kr

-==-!=%=
42500

‘1

713 .181
47300 794 .202
-————. —___— ___
53’700, 595 ,111

.?!:?:.l_?!!-- “K

V. THEORETICAL ANALYSIS

1. Formulation of problem as Variation Problem

To analyze the behavior of a circular or elliptic cyl-
indrical shell in pure bending. we,resort to the principle
of mininurn potential energy. The assumption of infinite
shell length neutralizes eventual edge effects. Conforma-
ble to another assumption, there is to he no local bulging
of shell walls. Then all sections, of”the shell are strained
in the same fashion for reasons of symmetry, so that the ,
analysis can bc restricted to a piece of shell of length 1.

For a given curvature K of the shell axis, the form
which the shell section assumes must be so defined that by,
fixed K the energy of form change U becomes a minimum.
So if t~c strain of the shell section and consequently,
the energy of form change U is known in relation to cur-
vature K, ‘ the bending moment B follows as derivative
of U with respect to K.

,.
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The form change energy U comprises:

1) The form change energy UI , corresponding to the
strain of the shell section.

2) The form change energy Ua , corresponding to ,the

length changes of the shell fibers.

The strain of the shell section is assumed to consist
only in a deflection but not in”a length change of the lin-
ear elements of the section of the middle of the shell.
It is assumed that both strains corresponding to the energy
of form changes U1 and u~ take ?lace successively, for
example - first the strain of the shell section and then
the elongations or contractions in shell-length direction.
The additional strain of the shell section following the
initiation of the axial stresses as a result of transverse
contraction, is small enough to be negligible.

It is then:

with

s’
U1.= : 12 (1- V*)

- —-——-——

TJ2=: Sm K2 J2

JI ‘$ (A Ku)’ du

J2 =$h2du

Jl (4)

(5)

(6)

(’7)

whereby the integrals extend over the whole circumference
of tile shell section. It is:

K, curvature of the shell axis

~ Kll , change in curvature of the section of the median
shell area

u, arc length of the section of the median shell area

h, distance of an element of the strained shell from
the neutral axis

Assume the strain of the shell section to be defined
by the natural coordinates v and w of the displacement
of the shell elements in the sectional plane: v, to denote
the component of displacement in tangential direction (pos-
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itive in the sense of increasing u) and w, the component
>.,, “in normal directfio-~ (the i-nside no.~mal...o.o.be p,~siti.ve) of

the undeformed section. The curvature change A Ku of
the shell section, which may be any, so long as it–has no
corners, can be expressed with Frenetts formulas through
the displacement components v, w, and their derivatives.
We have:

(8)

Here p is the radius of curvature of the shell section
(positive if the center of curvature lies on the inside
normal), p? the first derivative of p with respect to
arc length u, and w “ the second derivative of w with
respect to u. If, as according to our premise, the length
of the linear elements of the section is constant, then
there exists %etween v and w, the relation:

With due regard to (9), equation (8) becomes:

AKu=pvlf1+2ptvlI +
(’” +;) “ - v $

(lo)

It will he observed that in (8) to (10) the higher
powers of v and w and their derivatives are disregard-
ed relative to the first powers of these quantities, as a
result of which the validity of these formulas is confined
to relatively small v and w.

The problem now is to so define v and w that for
given curvature K of the shell axis the energy of form
change U assumes a minimum value: i.e., to solve the
variation problem:

u= UI + U2 = Min (11)

2. The Orthotropic Circular Cylinder Under Pure Bending

We first analyze the pure bending of the infinitely
long orthotropic circular Cylinder on the premises of
section II, and solve the previously derived variation
problem for this particular case. The curvature change
A Ku of the shell section becomes:

(12)
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according to equation (10), with r equal to radius of
median shell area; The distance h of one element of the
strained shell from the neutral axis is:

h= r cos t - v sin t - w cos t (13)

whereby w is to be replaced according to (9); the sigw
nificance of t is seen from figure 12. The variation
problem (11), for which the solution could equally well be
arrived by integration of the correlated Eulerian differ-
ential equation, is solved directly by the formula (Ritz~s
method):

v = r j~l Aj sin 2jt (14)

No terms other than those given can appear in the formula
for v for reasons of symmetry. With (14) and allowance
for (12), (13), and (9), equations (6) and (7) give:

41-r : jaJl = –-
r j=l

(4 j’ - 1)2 Aj’ (15)

J= = -rrrs (1 - 3 AI) (16)

In the determination of Ja the squares and prod-
ucts of v and w are neglected relative to the first
powers of these values. The conditions for minimum energy
of form change U are the n equations:

au–= ()
aA:

(j = 1, .... n)

or
J

aJ1 12 N ~J2
-—— . .— _._—
3Aj = r4 tlAj

with
2 r’ (1 - v’)

N = :Y–:––F..—–—–––

(17)

(18)

with (15) equation (17) becomes:

From these equations, the quantities
‘J

can be computed:
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Hereby n may be of arbitrary size; that is,
?.> ,,

i ““v== r sin 2t

13

z

is the exact solution of tlie
bending moment B becomes:...

variation problem (11), The

(
-llE Sm K r3 1 - gN

)
(19)

The bending moment reaches its maximum value Bkr if
ecluation

is fulfilled. Equation (20) gives: N = :.

By observing (18), we have:

Putting

whereby

we find:

Bkl. = C —————-.
J-

r s ~-m

C=2C21.C19EW
–9 –-”

c . 2.5. 0.314
9

f

s—..
Sm

(20)

(21)

(22)

but akr is only a fictitious stress since W is the sec-

tion modul”u”sof the unstrained circular. section.

Allowing for the squares and products of v and ‘WV,
disregarded in equation (16), we have:
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Ja =nr3 (l- 3A1) + $ (v sin t + w cos t)a ds

& A2 A3 + ‘2-+ ~~ A22 + z 37A3S + ...
)

(23)
2

Then the equations (17) read, for n = 3, for example:

3675 A3 +

(24)

from which ~tl to As (Up to An in general) can be ob-
tained. The bending moment

(25)

reaches a maximum value if

This equation gives N and, by observing (18), (23),
and (25), the critical bending moment. It again yields
the equations (21) and (22) for ‘kr and ~kr but with

different coefficients C and c. It is:

c = 1.22 and c = 0.388

which values are, as stated before, still not completely
correct.

On reaching the critical condition (fig. 12) the rel-
ative shortening in diameter of the shell section perpen-
dicular to the neutral axis is:

-wO
—- = .N=;
r

(27)

if the squares and products of v and w are neglected

llml--~ml m IIml Iln1m IllIml1111111IlmlMl I 11111I III I 1111111111II III IlmlIII
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in (7). The relative lengthening of the diameter coinci-,>. .
debt’with ‘the neutral axis is of.t,he same_ magqitude. If
the squares and products of v and w in J= are con-

sidered, then the relative shortening of the diameter per-
pendicular to the neutral axis amounts to

(28)
‘mO rl
— =
r 2 ZjAj

j=l

and the relative lengthening of the diameter coincident
with the neutral axis

=Tr~2 2 ‘~—— .— =
r j=l. (-l)j+l j Aj (29)

Here the values
‘j should bc determined from (1’7) and N

from (26). The values we/r and - wn,2/r together with

the corrola.t’od values of shells mith elliptic section arc
shown in figures 6 and 7.

The actual critical bending stress ~kr 1 (in contrast

to the fictitious “ocnding stress ~kr ) becomes:

Thcl:eby the critical bending moment. is, according to (19):

‘kr = E Sm K Ja

and the section modulus of the deformed shell section (re-
ferred to the neutral axis) :

O“Dsorvancc of (18) gives:

If the squares r.nd products of v and w in equation
(7) arc neglected, it affords with equation (27):

c! = (1 - N) Ji-
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Allowance for the squares and products of v and w, and.

observance of (28) gives:

The values computed for c? are plotted in figure 5.

3. Pure Bending of the Orthotropic Illliptic Cylinder

In the following we solve the variation problem (11)
for a cylindrical shell of elliptic section. The study is
confined to the symmetrical cases of lending about the ma-
jor or minor axis of the shell section. A rectangular sys-
tem of coordinates in the plane of the shell section makes
the x-axis coincident with the major, and the y-axis coin-
cident -with the minor, cross-sectional axis (fig. 13).
Then the equation of the section of the median shell area -
expressed in parameters- reads:

x= a sin t

Y = b Cos t

where a is the major, and. b the minor, half axis of
the cross-sectional ellipse. Conformable to (6) and (10),
we have:

Jl = $ [p ~t”+ 2P’ v“ (p” + ~)v’ - v $12 du (30)

whereby

du=a (1 - ka sin2 t)
1/2

dt, k2 = %g~~ti

p=~(l-k2sin2t)3’2 a, pl=-~~k2sin2t

P
tl=- 3:k2 C*S 2t (1 - k2 sin2 t)-1’2 ~

If hg is the distance of a shell element from the

neutral axis in bending shout the major cross-sectional
axis, and hk , the corresponding distance in bending about
the minor axis, we have (cf. fig. 13):

‘g = b COs t - wcoscp-vsincp (31)

hk = a sin t - wsincp+vcoscp (32)
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Here ~ is the angle of the normal with the minor axis
-, of the ,ellipse. It is: .,,.

sin cp = ~~ sin t (1 - kz sins t)-l’a

Cos q) = cos t (1 - ka sin2 t)-1’2

According to equation (7) the observance of’(31) and
(32) in bending about the major cross-sectional axis (de-
noted hereafter hy subscript g) gives:

Ja ‘# (b2 cos2 t-2b w cos t cos p -2b v cos t sin ~)du
~

(33)

and lly bending about the minor cross-sectional axis
(subscript k):

Jak=j (a2 sin2 t-2a w sin t sincp+2a v sin t cos cp)du
(34)

The squares and products of v and w are neglected
against the first powers of these values; p Vt can be
substituted for w according to (9).

l?he variation problem (11) can be solved by the Ritz
method. The function v can be approximated by

n
v=a Z ~j sin 2j t (35)

j=l

For reasons of symmetry, no terms other than those
given can occur in the formula for v. With formula (35),
equation (30) becomes,
tations:

after several intermediate compu-

rf/2

J1 =
4————___

[(- j~l Aj Kj)a dta (1 - .k2) t
o

wi th

(36)

‘j = { aj cos 2j t [-4j2+-(cr3-~ sin= t-l-Ysin4 t)

(1-k2 sins”
-1

t)-a] + E sin 2t “sin 23 t(l-kz sin2 t)

}
[4j2 + ~ (1-1.2 sin2 t)-2] (1-k= Sins t)l/4

where for abbreviation:
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1-= 3ka = a, 4k2 = ~, -2k4 = Y

The term for J1 given ,in (36) is valid in bending
about the major, as about the minor, “axis of the shell
sectionm The evaluation of the integral in (36) %y series
development being very tedious, the numerical integration
is carried out by the Gauss-Lobatto method (reference 8).
The integral is approximately replaced by a sum of n
terms. The summands are the values multiplied by certain
weights g of the to-be integrated function at the inter-
val stops and at m - 2 prescribed points of the interval.
The thus-o%tained approximati~n is of the order of 2m - 1;
i.e., a parabola of the 2m-1 degree is exactly inte--
grated by this method. Then equation (36) becomes:

2Tr m n 2
Jl = ———..—.-— -

x ‘p (j~~a(l- k2) p=l
Aj Kjp

)
(37)

The integrals J2 and J2k, conformable to equations

(33) and (34) cangbe exactly defined, i.eo:

Jak
[

2k2= 21T as S + 3-2 Al + $? A2
1

(39)

with
77/2

r 1 /2
R=$ (1-k2 sin2 t)

()

12

COS2 tdt=$-~~ k“2
t
o

() Y-i ($%ZT F- ● **
_~l~32k4-—-

6 2.4
RI 2

S$

/

2
= ‘ (1-k2 sinz t )1’2 sin2

()
tdt=~-f~k2

.
0

()
-~ +32 !$Q($:%y $.. .

.

With (35) the energy of form change U. becomes a
function of the n variables Aj (j = 1, .*.., n), and
so variation problem (11) reduces to a common “extremum’!
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prollem. The accuracy Of the method can be raised at will
.> ~~~by increasing n. But , in general,. it affords no possibil-

ity to ,assess the errors. The values Aj, for which U
becomes a minimum by constant K, follow from the n lin-
ei.r equations:

au=o——-
~.lij

(j =lX .... n)

or

aJI 12 N aJa—— = . ——. _—-
aAj ~4 aA.

J
with

Sm K2 a4 (1 - V2)
]T = ——————— _—————-

S3

(40 )

(41)

From equation (37) follows:

.3JI 41-f n
——— = ————_—_—__ EAi~
~Aj

gp (Kj Ki )P
a(l - ka) i=l p=l

Then thl~ equations (40) with observance of (38) and
(39) become, in beniing about the major cross-sectional
axis:

m
i~l Ai Z gn (Kl Ki)P = 3 (1 - k2) (3 - k2) Np=l .. 1

m
i~l Ai X gP (K2 Ki)P = 3k2 (1 - k2) N

1

(42)
= p=l

n
z Ai ~~1 gp (Kj Ki)P = O (j = 33 ...)n)i=l

Cmlldin “oending about the minor cross-sectional axis:

m
i~l Ai X gp (Kl Ki)P = -3 (1- k2) (3-2k2) N

p=l
1

ifl A.i ~~1 gP (Ka ICi)P = -3k2 (1 - k2) N= I (43)

n m
Z Ai Z gu (Kj Ki)p = 0)” {j =.3, ....n).

i=l -p=l J

Having defined the values
‘j from (42) and (43), the bend-

ing moment B follows from
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(44)

with Ja as given in (38) and (39). The bending moment
B reaches its highest (critical) value Bkr, if

(45 )

From these equations follow:

I?g =
2 (1 - ka) R—————-.—.—.- ——-———— —

[
3 (3-k2)#+k2#s 1

whereby in the expression for
‘g

the values Al and Aa

are to be taken from (42) and in the term for Nk from
(43).

By olserving (38), (39), and (41), equation (44) gives:

Bkr = C ————— —
J-P

as~~

with

(46)

Defining a fictitious critical bending stress ‘kr
with

‘kr = W ~kr
whereby

g h (% + 3a) sm,‘g=4 WI< = ~ a (a + 3b) Sm
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are the section moduli of the shell section with respect
to the major and minor cross-sectional axes, me find:

*-. .,.. “.

with

16 R
Cg = ‘– --——---y9 3+J-

16 (1 - kz) S

1 6 (1 - ka) R————————— ———.— -—

(3- ‘A+k’igka) N

/“ - 6S

(47)

Clc = —9— --_.__ —____

21
—————————

1+3~1-k (3 - 2k2) ~ + k2 4:

Figures 14 to 16 show the values c~ and Ck anG
.
J.

E; plotted against k2 and n. A proof of the converg-

ence of the method is withheld in the present report.
Even so, the diagrams manifest ~he good convergence for
small k2, while for higher k , it is less gGod. But

even in this range the curves toward which the values Cg
1

and —L—

W
strive, can he plotted with sufficient accuracy.

Figure 4 shows the values Cg a.nd ck plotted against k2.

Observance of the squares of products of v and w,
disregarded in (33) and (34), reveals the right-hand sides
of equations (38) and (39) augmented by the terms:

21T

$(w cos CP + v sincp)2 du =<=
f(

2
~ Aj Lj) dt (48)

l-k j=l

and o

r

,2rr~

$ (W sin~ - v CO SCP)2 du = as j~l Aj Mj)2 dt
j (.

(49)
.

Hereby o

3/4
Lj = 2j (1-k2 sin2 t) cos t cos 2j t

-1/4
+ (1-k2) (1-k2 sin2 t) sin t sin 2j t
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3/4

‘j
= 2j (I-ka sin2 t)” sin t cos 2j t

- (1-k2 sin2 t)-1’4 cos t sin 2j t

Evaluating the integrals in (48) and (49), conforma-
ble to Gauss-Lobatto, the equations (38) and (39) are re-
placed by

32 = 2Tr a3
[
(1-k2) R - 2-# Al - ;: A,

Lq

1 m

(

n 2
+ ————. Eg Z Aj Ljn

1 - kz P=l P j=~ .)]

J2 = 2n a3 [
S + &R_.& Al -!-~2~ A,2

k L 2

n 2

+ & gp (
-~ Aj Mjp
J–1 )]

In bending about the major cross-sectional
equations defining

‘j are:

m

~ _Z1 gn (_K1 Ki)p~ A.
j=l

+ 12 N’ ~~1 Ai
~~1 gp (LILi)p =3(1-k2) (3-k2) N_—

m
i~l Ai & gP (Ka Ki)p

m
+12N ~~1 Ai ~ gn (LeLi)p =3ka (l-ka) N= p=l -

n m
E A.i X gn (Kj ‘i~pi=l p=l -

n m

(50)

(51)

axis, the

> (52)

+ 12 N i~l Ai, ~ gp (LjLi.)p = O (j=3 n)
p=l

9*.*9
~

and for bending about the minor cross-sectional axis:
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+ 12 (I-kaj N ~ gp (MIMi)P~ Ai P=li=l

=- 3 (1-k2) (3-2k2) N

n
Z Ai ~)~1 gp (Ka Ki)p
i=l =

m
+ 12 (1-1c2) Iii~l Ai Z gp (M2Mi)p

p=l I (53)

n
Z Ai ~ gP (Kj Ki)p
i=l :g=l

=- 3ka (1-k2) N

n
-1-12 (1-k2) N Z Ai p~l gp (“jMi)p =0

i=l

(j=3, ....n)
J

The bending moment B follows from equation (44),
where3y J2 is given in. (50) and (51). The value of K
or Ii, for which B reaches the critical value Bkr$ iS

computed from the equation:

81{ n n m dAi
-)-—’0~ gp (LiLJ p dli-1-———_— _ .X A. (54)

1 - k“- i~l j=l J p=l

for lending about the major axis and
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m a
2S + (3-2ka) Al + ka A2 + 2

X ‘P (j=~
~ Aj M“

p=l Jp)

[

dA ~ ~ dA2
+ 2N (3-2k2) ~~- + k ~- 1

(55)

for bending about the minor axis of the shell section.

The ~>esults for Bkr and Ukr are again the equa-

tions (46) and (47) but with different coefficients C
and c. The thus-obtained values

‘g and ck are in-

cluded in figure 4.

The strain in the originally elliptic section is ob-
tained from the functions v and w known after the val-
ues ‘j have been determined. Assume that the relative
length changes of the half axes of the shell section upon
reaching the critical conditions are given (fig. 13). In
bencling about the major axis of the section, the relative
contraction of the minor half axis b becomes:

(56)

and the relative lengthening of the major axis a

In “Deriding about the minor axis of the section the
relative shortening of the major half axis a becomes:

(58)

and the relative lengthening of the minor half axis b is:

(59)
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I

{ If the squares. and products of the displacement com-

!&=.---:fthe~~ :al%;, Wmonents are neglected against the first powers
i,..-: it-is necessary to write:
!{

2 (1 - ka) R
‘~’-

T

——-— ...———-———

3 (3
~ Aa.k2)$#+k ~-1

Nk =
- 2s——-—--——-————

“[
3 (3 M 2ka)

a A2
#+k~- 1

in the oquat.ions (56) to (59), while if these squares and
products of v afld w are allowed for, .Ng and Nk must
be determined from (54) and (55). The numerical values of
tvo/b, etc., are illustrated in figures 6 and 7 for vari-

ous ]<a.

The actual critical bending stress Cfkr’ (in contrast
to the fictitious stress ~kr referred to the undeformed

section), is readily obtainable.
jor axis of the section, it is:

agkr
! . ‘gkr

~g I

In bending about the ma-

Herchy the critical moment is, according to equation (44):

3
gk r

= E Sm K Jag

with

K =

/

s Ng.—- —— - ——
a’ Jij -.2 ‘Sm

and the sccti.on modulus of the strained shell section (re-
ferred to the major axis) lecomes:

~gl %2E
b “ Wo

With observance of equation (56), we find:

II -.- .. ...
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f

f

s
‘fgkr = .-———--. — —

Cg~J--” ;g Sm

Accordingly, the actual critical bending stress in bending
about the minor cross-sectional axis is established at:

E

akkr
f = C]c

f

t –—––––– –s_ .-1
~ f’k ‘m

The values of Cg ! and Ck ! are shown plotted against k

in figure 5.
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VI. APPENDIX

Results of Previous Studies

a) Theoretical.- Brazier (reference 2) treats the pure.——.— —_——
bending of a, circular cylinder of infinite length, wherein
he neglects the higher powers of the displacement compo-
nents v and .W relative to the first powers of these
quantities. He arrives at a differential equation which
must Ye exactly solved. Chwalla(reference 4) does not
make this omission in his analysis of the work of form
change corresponding to the tension stresses. His solu-
tion is an approximation evolved on the basis of an ellip-
tic formula for the shape of the strained section of the
circular cylinder. Nothing can be said about the magni-
tudo of the errors. Chwalla obtains a somewhat different
numerical factor in the formula for the critical bending
moment from that given in the present article - probably
due to the fact that he does not use as mathematical ex-
pression for the assumption of a constant arc length of
the shell section the differential equation (9), tvhich is
only valid for small v and w. He rather defines corre-
lated pairs of diameters of the elliptically deformed sec-
tion, so that the circumference of the cross section re-
mains constant and equal to the circumference of the medi-
an surface of the undeformed shell, regardless of the mag-
nitude of the strain.

The principal results of Brazier and Chwalla have leen
tabulated in table III.

Brazier likelvise approximated the critical bending
moments at which local instability phenomena (bulg,ing) are
imminent . Because he assumes the whole shell to be as ad-.
verselys tressed as the extreme filer in the compression
zone, his values for the theoretical critical moment are
too lo~To For this reason, and in consequence of the great
influence of preliminary wrinkling througla.mhich the mo-
ment, at which a perceptible nrinkling actually starts is,

under certain circumstances, markedly reduced, the practi-
cal value of this analysis is less great. Besides, he
uses a formula for the critical stress of an axially com-

pressed cylinder containing the factor $~~~ (Southtvell ts

method), which is llOtV omitted after the works of H, Lorenz
and K. v. Sanden (reference 9). Without this factor, the
values for the critical bending moment become slightly
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greater. But the noteworthy fact is, that this calculation
,.-,. of the critics.1.bending moment results .i.n a fprrnulaof the

same construction as Brazierts other consideration

3) ~~~erimontal data.-.——--—-- —.. The availa%le results of tests
on circular cylinders in bending are plotted against r/s
and Z/r (Z = length of cylinder) in figures 17 to 19
(references 2, 5, 6, and 7).

TARLE III. Theoretical Resiil”t”3by” Brazier
----————————————— --———— —__-————-—————————.

‘T

According to
Brazier

—————— —.———.—.——- —————— ——__———L_ .————————— .

E
1. Critical bending moment Bkr=0.987 —————--

dl-v’ r ‘2

(with v=0.3)~Bkr=.l.035 E r Sa

i
2. Pertinent curvature of :

shell axis (V=003) K=O.494 $2

3. Pertinent relative
shortening of diame-
ter perpendicular to
the neutral axis

W.—— = 0.222
r

4. Pertineilt relative
lengthening of diam-
eter coinciding -with
the neutral axis %fz = 0.222

r

5. Fictitious critical
lending stress

I
(V=O.3) akr = 0.329 E $

6. Real critical bending
stress (V=003) ~kr’ = 0.385 E :

I
–—————––__-___-_-–—J__–—–––-__–___-––––––

Translation %y J. Vanier,
National Advisory Committee
for Aeronautics.

and Chwalla
———-_——————————
According to

Chwalla
-——-——————.——----

‘kr=1.19 E r S2

K=O.806 *

y~
r

= 0.365

‘n/2 = 0.307
r

Ck r = 0.379 E :

~kr’ = 0.523 E ;

. . , ,,,,,, ,,,,-...
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